Search results for "QUANTUM DISCORD"

showing 10 items of 55 documents

Entanglement entropy in a periodically driven quantum Ising chain

2016

We numerically study the dynamics of entanglement entropy, induced by an oscillating time periodic driving of the transverse field, h(t), of a one-dimensional quantum Ising chain. We consider several realizations of h(t), and we find a number of results in analogy with entanglement entropy dynamics induced by a sudden quantum quench. After short-time relaxation, the dynamics of entanglement entropy synchronises with h(t), displaying an oscillatory behaviour at the frequency of the driving. Synchronisation in the dynamics of entanglement entropy, is spoiled by the appearance of quasi-revivals which fade out in the thermodynamic limit, and which we interpret using a quasi-particle picture ada…

---Electronic Optical and Magnetic Materials; Condensed Matter PhysicsPhysicsQuantum discordQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Electronic Optical and Magnetic MaterialConfiguration entropyFOS: Physical sciencesQuantum entanglementCondensed Matter PhysicsSquashed entanglement01 natural sciencesTopological entropy in physicsSettore FIS/03 - Fisica Della MateriaQuantum relative entropy010305 fluids & plasmasQuantum mechanics0103 physical sciencesQuantum Physics (quant-ph)010306 general physicsEntropy (arrow of time)Joint quantum entropyCondensed Matter - Statistical Mechanics
researchProduct

Dynamics of quantum discord of two coupled spin-1/2’s subjected to time-dependent magnetic fields

2019

Abstract We describe the dynamics of quantum discord of two interacting spin-1/2’s subjected to controllable time-dependent magnetic fields. The exact time evolution of discord is given for various input mixed states consisting of classical mixtures of two Bell states. The quantum discord manifests a complex oscillatory behaviour in time and is compared with that of quantum entanglement, measured by concurrence. The interplay of the action of the time-dependent magnetic fields and the spin-coupling mechanism in the occurrence and evolution of quantum correlations is examined in detail.

010302 applied physicsPhysicsBell stateQuantum discordTime evolutionGeneral Physics and Astronomy02 engineering and technologyQuantum entanglement021001 nanoscience & nanotechnology01 natural sciencesAction (physics)lcsh:QC1-999Magnetic fieldQuantum Discord Concurrence Interacting QubitsQuantum mechanics0103 physical sciences0210 nano-technologyQuantumlcsh:PhysicsSpin-½Results in Physics
researchProduct

Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence

2016

Quantifying coherence is an essential endeavour for both quantum foundations and quantum technologies. Here the robustness of coherence is defined and proven a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage enabled by a quantum state in a …

FOS: Physical sciencesGeneral Physics and AstronomyContext (language use)Degree of coherenceExpectation value01 natural sciences010305 fluids & plasmasQuantum stateQuantum mechanics0103 physical sciencesStatistical physics010306 general physicsQCMathematical PhysicsQuantum PhysicsQuantum discordMathematical Physics (math-ph)Coherence (statistics)Computational Physics (physics.comp-ph)3. Good healthCondensed Matter - Other Condensed MatterQuantum technologyCoherence theoryQuantum Physics (quant-ph)Physics - Computational PhysicsOther Condensed Matter (cond-mat.other)Physical Review Letters
researchProduct

Quantifying nonclassicality: global impact of local unitary evolutions

2012

We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord (defined via the Hilbert- Schmidt norm), thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish that two-qubit Werner states are maximally quantum correlated, and are thus the ones that maximize t…

High Energy Physics - TheoryQuantum t-designquantum discordFOS: Physical sciencesQuantum Hall effect01 natural sciencesUnitary state010305 fluids & plasmasQuantum mechanics0103 physical sciencesQuantum phase estimation algorithmQuantum operationStatistical physics010306 general physicsQuantumMathematical PhysicsPhysicsQuantum discordQuantum PhysicsMathematical Physics (math-ph)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterHigh Energy Physics - Theory (hep-th)Norm (mathematics)Quantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct

Lindblad equation approach for the full counting statistics of work and heat in driven quantum systems

2013

We formulate the general approach based on the Lindblad equation to calculate the full counting statistics of work and heat produced by driven quantum systems weakly coupled with a Markovian thermal bath. The approach can be applied to a wide class of dissipative quantum systems driven by an arbitrary force protocol. We show the validity of general fluctuation relations and consider several generic examples. The possibilities of using calorimetric measurements to test the presence of coherence and entanglement in the open quantum systems are discussed. QC 20141010

Hot TemperatureQuantum simulatorFOS: Physical sciencesresonance fluorescenceQuantum entanglementCalorimetry01 natural sciences010305 fluids & plasmasOpen quantum system0103 physical sciencesStatisticsFysikStatistical physicsequality010306 general physicsQuantum statistical mechanicsPhysicsQuantum discordQuantum Physicsta114Lindblad equationModels TheoreticalClassical mechanicsPhysical SciencesDissipative systemQuantum TheoryQuantum algorithmfluctuation theoremQuantum Physics (quant-ph)
researchProduct

Atoms, Photons and Entanglement for Quantum Information Technologies

2011

Atoms, Photons and Entanglement for Quantum Information Technologies Julio T. Barreiro a, Dieter Meschede b, Eugene Polzik c, E. Arimondo d, Fabrizio Illuminati e, Luigi Lugiato f a Institut fur Experimentalphysik, Universitat Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria b Institut fur Angewandte Physik, Universitat Bonn, Wegelerstr. 8, D-53115 Bonn, Germany c Niels Bohr Institute, Danish Quantum Optics Center QUANTOP, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark d Dipartimento di Fisica, Universita di Pisa, Lgo Buonarroti 3, I-56122 Pisa, Italy e Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (…

IonsQuantum opticsAtomsPhotonsQuantum discordQuantum networkPhotonComputer scienceQuantum sensorCavity quantum electrodynamicsQuantum simulatorQuantum entanglementIonQuantum technologyOpen quantum systemQuantum computationAtomGeneral Earth and Planetary SciencesQuantum simulationQuantum EntanglementQuantum informationAmplitude damping channelHumanitiesGeneral Environmental ScienceQuantum computerProcedia Computer Science
researchProduct

Instability of Equilibrium States for Coupled Heat Reservoirs at Different Temperatures

2007

Abstract We consider quantum systems consisting of a “small” system coupled to two reservoirs (called open systems). We show that such systems have no equilibrium states normal with respect to any state of the decoupled system in which the reservoirs are at different temperatures, provided that either the temperatures or the temperature difference divided by the product of the temperatures are not too small. Our proof involves an elaborate spectral analysis of a general class of generators of the dynamics of open quantum systems, including quantum Liouville operators (“positive temperature Hamiltonians”) which generate the dynamics of the systems under consideration.

Non-equilibrium quantum theoryQuantum dynamicsLiouville operators82C10; 47N50FOS: Physical sciencesFeshbach mapQuantum phasesSpectral deformation theory01 natural sciencesOpen quantum systemQuantum mechanics0103 physical sciencesQuantum operationStatistical physics0101 mathematicsQuantum statistical mechanicsMathematical PhysicsMathematicsQuantum discord82C10010102 general mathematicsMathematical Physics (math-ph)Quantum dynamical systemsQuantum process47N50010307 mathematical physicsQuantum dissipationAnalysis
researchProduct

Quantum scrambling via accessible tripartite information

2023

Quantum information scrambling (QIS), from the perspective of quantum information theory, is generally understood as local non-retrievability of information evolved through some dynamical process, and is often quantified via entropic quantities such as the tripartite information. We argue that this approach comes with a number of issues, in large part due to its reliance on quantum mutual informations, which do not faithfully quantify correlations directly retrievable via measurements, and in part due to the specific methodology used to compute tripartite informations of the studied dynamics. We show that these issues can be overcome by using accessible mutual informations, defining corresp…

Paperquantum information scramblingQuantum PhysicsPhysics and Astronomy (miscellaneous)Materials Science (miscellaneous)multipartite entanglementtripartite informationFOS: Physical sciencesaccessible mutual information and quantum discordElectrical and Electronic EngineeringQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Optics
researchProduct

Dynamics of correlations due to a phase noisy laser

2012

We analyze the dynamics of various kinds of correlations present between two initially entangled independent qubits, each one subject to a local phase noisy laser. We give explicit expressions of the relevant quantifiers of correlations for the general case of single-qubit unital evolution, which includes the case of a phase noisy laser. Although the light field is treated as classical, we find that this model can describe revivals of quantum correlations. Two different dynamical regimes of decay of correlations occur, a Markovian one (exponential decay) and a non-Markovian one (oscillatory decay with revivals) depending on the values of system parameters. In particular, in the non-Markovia…

Physics03.67.Mn Entanglement measures witnesses and other characterizationQuantum discordQuantum PhysicsPhase (waves)Markov processFOS: Physical sciencesQuantum entanglement03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox Bell's inequalities GHZ states etc.)Condensed Matter PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiasymbols.namesake02.50.Ga Markov processeQubit42.50.Dv Quantum state engineering and measurementsymbolsStatistical physicsExponential decayQuantum Physics (quant-ph)QuantumMathematical PhysicsLight field03.67.Lx Quantum computation architectures and implementations03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox Bell's inequalities GHZ states etc.); 42.50.Dv Quantum state engineering and measurements; 03.67.Mn Entanglement measures witnesses and other characterizations; 02.50.Ga Markov processes; 03.67.Lx Quantum computation architectures and implementations
researchProduct

Quantum correlations in PT -symmetric systems

2021

Abstract We study the dynamics of correlations in a paradigmatic setup to observe PT -symmetric physics: a pair of coupled oscillators, one subject to a gain one to a loss. Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely. Both total and QCs exhibit different scalings of their long-time behavior in the PT -broken/unbroken phase and at the exceptional point (EP). In particular, PT symmetry breaking is accompanied by non-zero stationary QCs. This is analytically shown and quantitatively explained in terms of entropy balance. The EP in particular stands out as the most classical configuration…

PhysicsENTROPIAQuantum discordPhysics and Astronomy (miscellaneous)Materials Science (miscellaneous)quantum correlationsquantum discordNon-Hermitian Hamiltonians01 natural sciencesQuantum OpticsAtomic and Molecular Physics and Optics010305 fluids & plasmasnon-HermitianPT symmetrySymmetric systemsQuantum mechanics0103 physical sciencesElectrical and Electronic Engineering010306 general physicsQuantumQuantum Science and Technology
researchProduct